
NIVA's efforts towards standardized IACS data flows

dominique.laurent@ign.fr

NIVA Stakeholder Forum Santorin 26 & 27 September 2022

IACS data flows considered in NIVA

Access to EO data

What is the issue?

- The EO based method for CAP monitoring requires big amounts of satellite images
- The access to Sentinel-1 and Sentinel-2 images is freely possible from the ESA Hub
- But in practice, it is far from easy
- ⇒ NIVA is proposing mainly consolidated knowledge
 - General reminders
 - State-of-play, capitalisation of NIVA experiences

Example 1: to know more about S-1

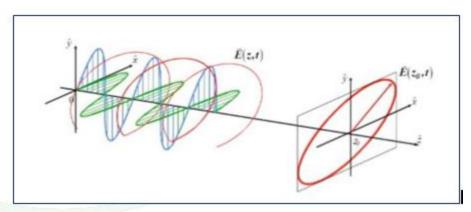


Figure 6 Vertical and horizontal polarisation of Sentinel 1 images

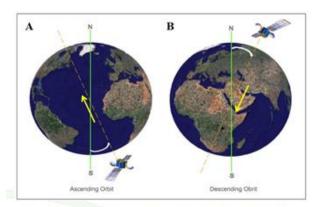
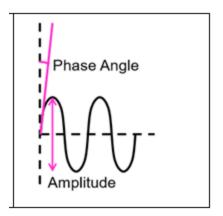



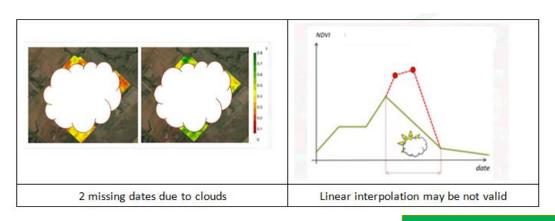
Figure 7 Ascending and descending orbits of Sentinel 1

«codeList» Sentinel1GRDMarkerValue + amplitudeAscending + amplitudeDescending + ratioVVonVHAscending + ratioVVonVHDescending + VHAscending + VHDescending + VVAscending + VVDescending

«codeList» Sentinel1SLCMarkerValue

- coherenceAscending
- + coherenceDescending

Using also the phase information


Amplitude information only

Example 2: DIAS assessment

	CREODIAS	Mundi	ONDA	Sobloo	WEKEO
Sentinel 2	L1C: full archive L2A: Orderable (also non- ESA) rolling cache 1PetaByte	L1C: last 12 months L2A: last 48 months (only Europe data)	L1C: full ESA archive L2A: full ESA archive	L1C, L2A: orderable, available last 9 months	L1C: full metadata, orderable
Sentinel 1	SLC: full archive in EU, 6 month worldwide, GRD: full archive		Full archive for SLC and GRD. Part of the archive are on cold storage (delayed retrieval available)	SLC, GRD: orderable, available last 9 months	GRD, SLC: full metadata orderable
Landsat 5/7/8	Landsat 5/7/8 full archive over Europe	Landsat 7/8 orderable	Available since 04/2018 (for Europe)	Landsat 8 On- demand	-
Missing/other data retrieval	Ordering/Caching mechanism available	Missing L2A can be retrieved from ESA or processed if not available	Missing data can be Retrieved and hosted in native format. Available VHR commercial data (orderable)	Spot sample data available/orderable	Many datasets from Climate/Meteorology

Comparison conducted by end 2019

Example 3: Quality of S-2 temporal series

The cloud issue!

«dataType» TemporalSeriesQuality

- numberOfObservations: Integer [0..1]
- + averageObservationFrequency: Measure [0..1]
- + longestGapInObservations: Measure [0..1]

At least, quality should be documented

The quality issue may also be solved by more advanced solutions

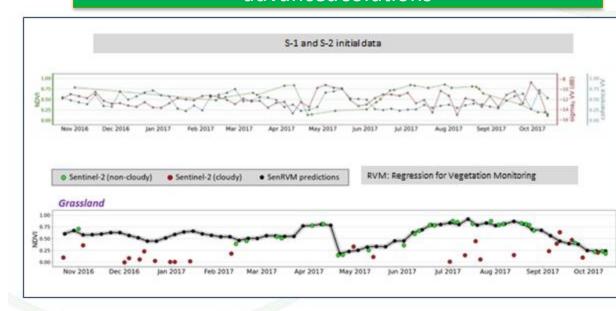
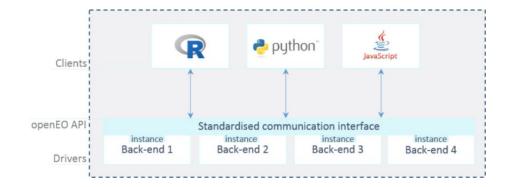
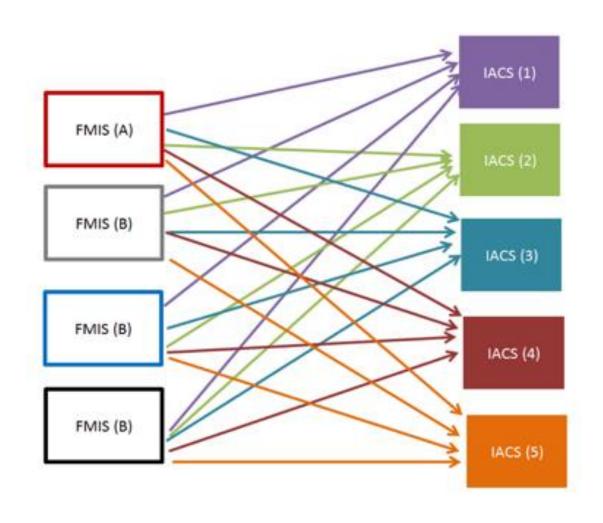
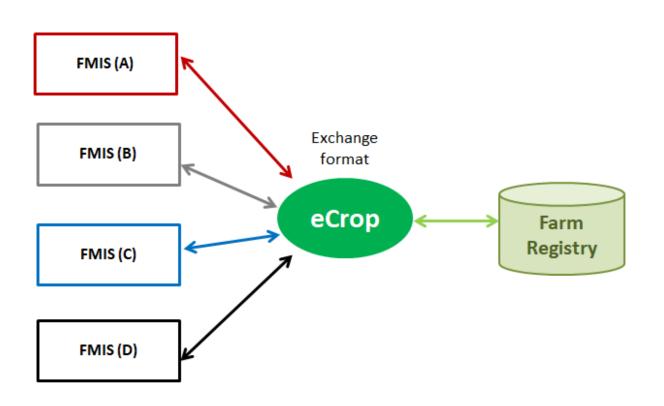



Figure 28 The gap filling of S-2 temporal series using S-1 data


Example 4: Open EO API

- Based on standards (STAC) and recommendations from the Open EO project
- An Open EO API specifies how to
 - discover which Earth observation data and processes are available at cloud back-ends
 - build processing graphs (list of jobs)
 - consume such services that run the predefined processing graphs
- The NIVA Open EO API enables to get Sen4CAP results as micro-services => it make data exchange more automatic


Data exchange between IACS and FMIS

Before NIVA

No interoperable solution

What NIVA has done

Prototype for interoperable solution.

More details in next presentations

IACS data export to external users

IACS data sharing: objectives

- ➤ Agriculture is a key activity having strong impact on environment and society.
- The IACS data would be of interest for many stakeholders other than just Paying Agencies.

NIVA projects aims to encourage IACS data sharing in order to optimise the benefits for society, but without harming farmers and without breaking data protection laws.

IACS data sharing: NIVA Methodology

Understand (European) legal context

Investigate user requirements (stakeholder interviews)

Get feed-back from farmer organisations

Make draft proposals for more IACS data sharing

Get feed-back from Paying Agencies

Data sharing considerations

CONCERN SOLUTION

Mandatory data sharing

Guaranty about data use

Farmers want to know who is going to use their data and for which purpose.

Distinction public/secret

Farmers consider that some of the data they provide to IACS is personal or secrete data. Get farmer(s) agreement

Open data

There is general agreement that a few set of IACS data (geographical data) should be publicly available.

Licensing conditions

Licensing conditions may restrict use of some IACS data to public bodies, researchers and/or farmer organisations.

Data preparation

Paying Agencies may prepare IACS data in order to make them less secrete, less private (anonymisation, aggregation, rounding, simplification, ...).

Discussions with farmer organisations

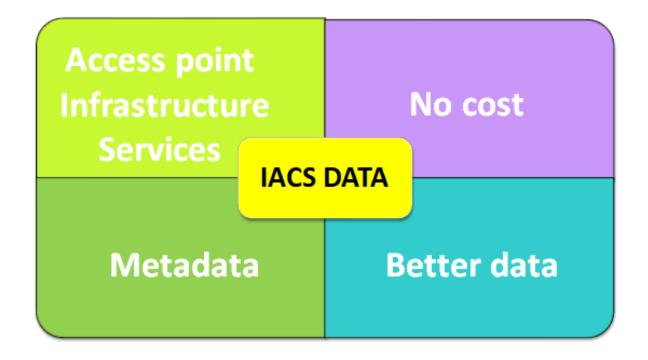
Global agreement will entail farmer trust about IACS data sharing.

Priorities for IACS data sharing

Description of the Land USE

2 Other geographic data

Payments Animals data

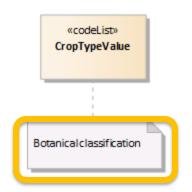

Control Geo-tagged EO crop data photos maps

Data about farmers

Entitlements

New data from farmers (fertilizers, PPP, practices ...)

Need for technical interoperability


Users want free and easy access to well-documented and good IACS data (better harmonised, more up-to-date).

Need for semantic interoperability

«featureType» AgriculturalParcel

- geometry: GM_Surface
- + identifier. Identifier
- + cropType: CropTypeValue [1..*]
- beginLespanVersion: DateTime
- endLifespanVersion: DateTime [0..1]

Land Use

Land Cover

«featureType» LandCoverFeature

- + geometry: GM_Surface
- identifier: Identifier
- + landCovertype: LandCoverTypeValue
- beginLifespanValue: DateTime
- + endLifeSpanValue: DateTime [0..1]

«codeList» LandCoverTypeValue

- + arableLand
- + permanentCrop
- + permanentGrassland

«featureType» LandscapeFeature

- + identifier: CharacterString
- + geometry: GM_Object
- + nature: LandscapeFeatureNatureValue
- + area: Area [0..1]
- + beginLifespanVersion: DateTime
- + endLifespanVersion: DateTime [0..1]

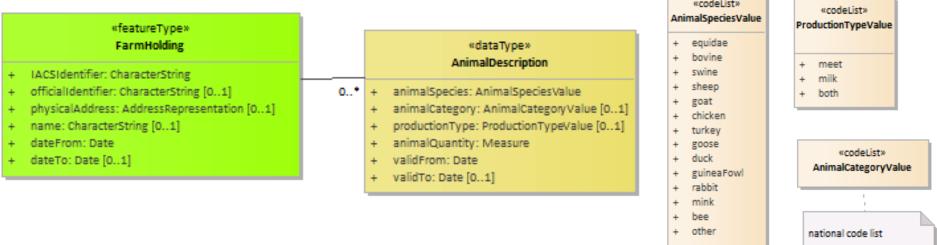
«codeList» LandscapeFeatureNatureValue

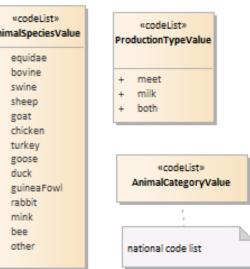
- 1.abiotic
- 1.1 naturalElements
- + 1.2 artificialElements
- + 2.biotic
- 3.water

Agricultural areas

Non productive areas

Need for semantic interoperability


- List of High Value Datasets is complementing the Open Data Directive
 - List not yet adopted
- High Value Datasets have to be freely accessible to everyone through APIs
- This list includes agricultural and reference parcels
- Animal data (total number, species, production type) is required under reference parcels



Need for semantic interoperability

NIVA is proposing to provide information about animals at farm level, which looks more logical

Conclusions

NEW JACS VISION IN ACTION

For more details

WP3 deliverables targeting PA

D3.1	Common glossary	3	IGN	M3, M12, M24
D3.2	Common semantic model	3	IGN	M9 M12 v36
D3.3	Common guidelines for software development	3	Abaco	M4, M12, M24
D3.4	Recommendations for IACS data flows	3	ОРЕКЕРЕ	M18
D3.5	Recommendations for standardised connections between IACS project and other applications	3	OPEKEPE	M24
D3.6	Appraisal of interoperability trials	3	FEGA	M24, M36
D3.7	Guidelines to cope with legal issues	3	ОРЕКЕРЕ	M18
D3.8	Profile of priority data for external applications	3	IGN	M30

- Presentation and results of the workshops
 - NIVA FARMERS WORKSHOP Niva4cap
 - WORKSHOP FOR PAYING AGENCIES ON IACS DATA SHARING Niva4cap

THANK YOU!

This project has received funding from the european union's horizon 2020 research and innovation programme under grant agreement no. 842009